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Github https://github.com/sammmlow/LEOGPS

Documents https://leogps.readthedocs.io/en/latest/

Version 1.3 (Latest)

Author Samuel Y. W. Low

LEOGPS is an open-source Python software which performs relative satellite navigation between two formation fly-
ing satellites, with the objective of high accuracy relative positioning. Specifically, LEOGPS solves for the double-
differenced baseline (using float ambiguity resolution) between satellites flying in formation in Low Earth Orbit (LEO).
As such, the relative positioning accuracy diminishes with increasing formation baseline lengths.

Note: For formations with baselines kept below 200km, the relative positioning accuracy using the double-differenced
kinematic technique can be kept under 1 meter for an automotive or space grade GPS receiver.

LEOGPS currently supports only observations from the GPS constellation (L1/L2 frequency), with observation files in
RINEX v2.XX format. LEOGPS also uses the precise ephemeris (.EPH) and clock bias and drift files (.CLK) provided
by the University of Bern, Center for Orbit Determination in Europe (CODE). As such, the coordinate frame used in
the relative positioning is the International Terrestrial Reference Frame (ITRS) which is an Earth-Centered Earth-Fixed
(ECEF) frame. Since the ephemeris files and RINEX v2 observations default to GPS Time, it is very important to also
note that the time scale used in LEOGPS output files is GPS Time (as opposed to UTC).

This project also gives sincere appreciation and credit to the University of Bern, for their provision of the CODE FTP.

Documentation tree for LEOGPS is listed below.
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CHAPTER

ONE

INSTALLATION

First, find the LEOGPS GitHub repository in this GitHub link, and download it. Alternatively, if you have Git installed,
you can open Command Prompt or your Git Bash, enter the directory of your choice, and type:

git clone https://github.com/sammmlow/LEOGPS.git

Second, you should do a pip install in your terminal of Martin Valgur’s Pythonic translation of Hatanaka
(de)compression in Python:

pip install hatanaka

The Hatanaka library in Python was kindly contributed by Martin Valgur in v1.1, and replaces the older “RNX2CRX”
and “GZIP” Windows-only executables, making the (de)compression possible across all operating systems.

That’s it! No further setup is needed, unless you need any of the other package dependencies.

Note: Package dependencies include: copy, datetime, decimal, hatanaka, math, matplotlib, numpy, os, pathlib, PIL,
tkinter, unlzw3, urllib, warnings

Next, we will run and explain the setup behind the default native scenario packaged in LEOGPS - a formation flying
scenario at ~200km in-track baseline of the GRACE mission.
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CHAPTER

TWO

FIRST STEPS

First, launch LEOGPS by running ‘leogps.py’ in a Python IDE or your terminal, and you will see a user-interface (UI)
with input parameters as shown below.

Fig. 1: Graphical User Interface (GUI) of LEOGPS

On the left face of the GUI, you would find text entries where you would input your scenario and spacecraft parameters.
On the right face of the GUI, you would find an embedded plot object (matplotlib) which would display the relative
orbit trajectory after resolving for the relative positions (you can select the frame, but the default should always be the
local Hill Frame with satellite LEO-A as the chief or origin).

Let us walk through the individual input entries and options on the left side of the GUI. This will be where LEOGPS
reads and loads the config.txt file into the user interface.

01. Spacecraft A 4-letter ID (LEOA)
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LEOGPS searches for the Spacecraft A’s RINEX file using the spacecraft 4-letter ID. You can create one arbitrarily
(letters only), just make sure it matches the first 4-letters of the file. For example, the 4-letter ID of GRACE A was
set to GRCA in the file name, followed by the 3-digit GPS day-of-the-year, a 1-digit zero, and a file extension of the
2-digit year plus an ‘O’ for an observation file, or ‘D’ for a Hatanaka-compressed observation file (GRCA2080.10D
for example).

02. Spacecraft B 4-letter ID (LEOB)

LEOGPS searches for the Spacecraft B’s RINEX file using the spacecraft 4-letter ID. You can create one arbitrarily
(letters only), just make sure it matches the first 4-letters of the file. For example, the 4-letter ID of GRACE B was
set to GRCB in the file name, followed by the 3-digit GPS day-of-the-year, a 1-digit zero, and a file extension of the
2-digit year plus an ‘O’ for an observation file, or ‘D’ for a Hatanaka-compressed observation file (GRCB2080.10D for
example).

03. Epoch start (YYYY-MM-DD-HH-MN-SS)

Specify the starting epoch for processing in LEOGPS (not necessarily the epoch where the first RINEX entry is found).
Follow the date-time format in the heading above, starting with YYYY. Note that the two RINEX files must have an
overlapping time frame in order to compute valid differential GPS results. Note also that the time scale is in GPST and
not UTC!

04. Epoch final (YYYY-MM-DD-HH-MN-SS)

Specify the ending epoch for processing in LEOGPS (not necessarily the epoch where the last RINEX entry is found).
Follow the date-time format in the heading above, starting with YYYY. Note that the two RINEX files must have an
overlapping time frame in order to compute valid differential GPS results. Note also that the time scale is in GPST and
not UTC!

05. Timestep in seconds (i.e. 30)

Time step used in processing of RINEX data (integer seconds only).

06. Enable L1 or L1/L2 processing?

LEOGPS can read L1 or L2 signals from GPS observations in the RINEX file. The L1 signal is the oldest legacy GPS
signal, comprising two parts: the Coarse/Acquisition Code (C1) and the Precision Code (P1). The P-code is reserved
for military use, while the C/A is open to the public. The L1 signal uses the frequency 1575.42 MHz. The L2 uses
the frequency 1227.60 MHz, and was implemented after the L1 and must be used along with L1 frequencies. It also
has a military code and a civilian use code. Enabling both L1/L2 allows LEOGPS to perform single point positioning
computations using the ionosphere-free linear combination, where a differential signal between L1 and L2 is used to
cancel out correlated ionospheric delay errors.

07. Enable code-carrier Hatch filter?

LEOGPS allows for noisy (but unambiguous) code measurements to be smoothed using the precise (but ambiguous)
carrier phase measurements. Such an algorithm combines measurements of both from the RINEX file and the filter
that implements the algorithm is known as a Hatch filter. Note that enabling Hatch filtering significantly increases the
processing time and memory usage.
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08. Set Hatch filter window length

LEOGPS implements the Hatch filter as a sliding window filter. Thus, you can set the length of the sliding window
here as an integer number of samples. For example, if your time step selected was 10 seconds, and the window length
input in this option was set to 30, then your effective sliding window duration is 300 seconds.

09. Number of sigmas in cycle slip detection

LEOGPS implements a very basic carrier phase cycle slip detection algorithm by performing an interpolation of com-
bined carrier phase data, and observing if there are any single points of data that exceed “X” sigmas of the interpolated
carrier phase. “X” is the input specified in this option here. For L1-only processing, LEOGPS uses the Melbourne-
Wubbena linear combination as the carrier phase combination. For L1/L2 processing, LEOGPS uses the geometry-free
linear combination as the carrier phase combination. For carrier phase observations that exceed the “X” number of sig-
mas, LEOGPS will mark that point with a cycle slip flag print a warning message to the user in the terminal. However,
as of Version 1.3, LEOGPS does not attempt to repair or reject that particular observation.

10. Set cycle slip detection filter length

LEOGPS performs interpolation across a sliding window of samples in the cycle slip detection process. The user
specifies how many samples N are used for carrier phase interpolation and screening. The larger the value N, the
longer the processing but the lesser the likelihood of flagging a false cycle slip.

11. Set the GPS antenna X offset (DISABLED)

As the GPS antenna is unlikely to be positioned exactly in the center of mass of the spacecraft, the navigation solutions
likely center about the GPS antenna phase center rather than the body center of mass. This option allows the user to
specify the body-frame offset. Note: this option is disabled for now as LEOGPS has not been configured to read
spacecraft attitude files, needed for orbit-to-body-frame transformations.

12. Set the GPS antenna Y offset (DISABLED)

As the GPS antenna is unlikely to be positioned exactly in the center of mass of the spacecraft, the navigation solutions
likely center about the GPS antenna phase center rather than the body center of mass. This option allows the user to
specify the body-frame offset. Note: this option is disabled for now as LEOGPS has not been configured to read
spacecraft attitude files, needed for orbit-to-body-frame transformations.

13. Set the GPS antenna Z offset (DISABLED)

As the GPS antenna is unlikely to be positioned exactly in the center of mass of the spacecraft, the navigation solutions
likely center about the GPS antenna phase center rather than the body center of mass. This option allows the user to
specify the body-frame offset. Note: this option is disabled for now as LEOGPS has not been configured to read
spacecraft attitude files, needed for orbit-to-body-frame transformations.

14. Orbit frame (not shown in the plot)

LEOGPS will output a text file reporting the single point positions and velocities of the individual spacecraft, as well
as the relative baseline vectors. This option allows the user to toggle the output reference frame for the single point po-
sitions and velocities. The ITRF-ICRF (ECEF-ECI) conversion uses the IAU1976 Theory of Precession and IAU1980
Theory of Nutation in the celestial-to-terrestrial (and vice versa) conversion. Note that the plotter displays only the
relative baselines and not the single point positions.
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15. Relative orbit frame (default Hill)

LEOGPS will plot in the GUI (the big plot box on the right) as well as output in a text file the relative baseline vectors.
In practice, the Euler-Hill frame is typically used (and is the default selection) but the user can also toggle the relative
baseline data and plots to be displayed in ITRF or ICRF too.

We may now proceed to run the default LEOGPS scenario that comes with the build, for the GRACE formation flying
satellite mission. On the UI, click Load Config. This loads the configuration inputs from config.txt into the blank
entries explained ebove. If you did not make any changes to config.txt, the inputs should correspond to the GRACE
formation flying scenario on 27-07-2010, as the default example.

Whenever saving (Save Config) or running LEOGPS (Run LEOGPS), all inputs are saved in the
../LEOGPS/config/config.txt/ file.

Now, we are ready to run LEOGPS. Once we do, several things will happen (next page).
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CHAPTER

THREE

FIRST SCENARIO RUN

Now, your LEOGPS scenario should have begun running.

First, let us discuss about the RINEX observation files. Notice that the RINEX observation files have file names that
match the 4-letter ID and date-times in your LEOGPS scenario. For example, the GRACE satellites’ decompressed
observation file names are:

GRCA2080.10O
GRCB2080.10O

Notice also that in the ../LEOGPS/input/ directory, RINEX files ending with D in the file extension will automatically
be Hatanaka-decompressed (file extension changes from ‘D’ to ‘O’). LEOGPS accepts Hatanaka compressed and un-
compressed RINEX files. The native LEOGPS v1.3 comes with four Hatanaka-compressed RINEX observation files
for the GRACE A and B formation (a joint formation flying project by NASA and DLR), and the Lumelite A and B
formation (by NUS STAR).

To use your own custom RINEX observation files for your own spacecraft, you should provide the RINEX files following
the same file naming convention in the /../LEOGPS/input/ folder, with RINEX version 2.XX only, one for each LEO
satellite. The file naming convention for RINEX observation files is an 8-character string comprising the 4-letter ID of
the spacecraft (you can create one arbitrarily), the 3-digit GPS day-of-the-year, followed by a single zero digit. The file
extension is the last two digits of the year, followed by the letter ‘O’. If the RINEX observation is Hatanaka-compressed,
then the last letter of the file extension is a ‘D’.

Note: For help in understanding the contents of RINEX formatted files better, LEOGPS comes packaged with the
RINEX v2.10 documentation in the reference directory.

Second, for supporting files, notice also that LEOGPS will automatically download daily precise (final) ephemeris and
clock files from the University of Bern’s CODE FTP, and unzip them automatically. Ephemeris files downloaded will
span one day before and one day after the scenario date(s) so that the GPS satellite orbit interpolation can be done
beyond the edges of the scenario time-line to prevent edge effects (i.e. ringing, poor polynomial fits etc).

As long as the user has an active internet connection, you do not need to provide your own ephemeris and clock files,
as LEOGPS will automatically source it from the University of Bern, CODE. However, in the event where the FTP is
down, but the user has their own precise ephemeris and clock files, you can transfer these files into the /../input/ folder
and rename these files to follow the CODE naming convention so that LEOGPS detects these files and can use them
offline without access to the FTP.

The naming convention for precise clock and ephemeris files are also 8-character strings, starting with a ‘COD’, fol-
lowed by the 4-digit GPS week number, followed by the 1-digit GPS day-of-week number. The file extension for precise
ephemeris files is a ‘.EPH’ string, and for clock files it is a ‘.CLK’ string.

For example, an ephemeris (.EPH) and clock file (.CLK) from CODE, on the second day of the Week (Tuesday), and
on GPS Week Number 1594, would be named:
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COD15942.EPH
COD15942.CLK

Note: For a reference on geodetic calendar formats, refer to the this calendar.

Third, the interpolated data of GPS ephemeris and clocks are saved and plotted in the ../LEOGPS/output/ folders.
There would be a text file report of interpolated GPS ephemeris, as well as graphical plots of GPS satellites of PRN
IDs 1 to 32 (or fewer, due to spacecraft outages, manoeuvres, servicing etc).

Fourth and finally, the desired main output of LEOGPS - the single point positioning (SPP) and carrier phase differential
GPS (CDGPS) solutions, are saved in ‘LEOGPS_Results.txt’. You can open this text file using Excel or any string
formatting language you would like to use. Note that for the individual spacecraft ephemeris, the outputs are in the
coordinate reference frame chosen in the GUI under the input label Orbit frame; for the relative baseline vector (relative
position vector) the outputs are in the coordinate reference frame chosen in the GUI under the input label Relative orbit
frame. It is recommended (and of more use) to display the relative orbit in the Euler-Hill reference frame, which takes
Spacecraft A as the chief or reference spacecraft.

In the native LEOGPS build, the ground truths for the GRACE formation are also provided in the reference directory.
These truths are the precise orbit determination solutions, with relative position magnitudes validated by the GRACE
formation’s actual K-Band ranging radar data.

This concludes the explanation of the basic setup of LEOGPS. For more information on relative baseline determination,
refer to the tutorials on differential GPS in the next page(s).
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CHAPTER

FOUR

CARRIER SINGLE DIFFERENCING

This segment of the LEOGPS documentation gets into the technicals of baseline estimation between formation flying
satellites (or even between static stations in general), and it assumes that the user has sufficient knowledge on single-
point positioning concepts. The algorithm described in this section is based on carrier phase differencing, and is largely
implemented in the code file ambest.py (ambiguity estimation). For a tutorial on the more basic aspects of GNSS, the
user is invited to peruse ESA’s NaviPedia.

Carrier phase differential GPS, or CDGPS in summary, is the technique of estimating the relative position of a receiver
with respect to another, over a short baseline. The carrier signal’s phase is typically exploited for precise point posi-
tioning due to its ranging precision, rather than using the unambiguous code. In the case of GPS signals, the ranging
accuracy of the C/A code signal is typically on the order of ±3m for a typical GNSS receiver (on the modernized GPS
block without selective availability); whereas the ranging accuracy of the carrier phase of the signal is on the order of
millimeters due to the relatively short wavelength (19.05cm for L1 for example) and the accuracy achievable in most
receiver phase-locked loops today.

The carrier phase range can be modelled as the observed phase, plus an integer number of wavelengths, and plus a
series of systematic and random ranging errors. The goal of carrier phase differential GPS techniques is to remove
these systematic ranging errors through differential measurements which cancel common and correlated sources of
ranging errors observed by both receivers over a “short” baseline.

The integer number of wavelengths however, is unknown and must be estimated. This is known as the “integer ambiguity
resolution” problem in GNSS literature, and it can be estimated as a float, with subsequent integer fixing techniques
(i.e., wide-lane, narrow-lane, or if the error covariances are known, then integer fixing by Peter Teunissen’s LAMBDA).

Fig. 1: Figure C1.1: Carrier phase ranging illustration highlighting the ambiguity N.

In any case, the receiver end only measures the instantaneous carrier phase modulo 360 degrees. It is unknown to the
receiver how many integer cycles of the carrier signal has passed through the signal path taken from the emission from
the GPS satellite to the receiver. Nevertheless, the RINEX file carrier phase observable would normally give an integer
estimate nonetheless (usually using a pseudo-range model).
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In order to very accurately characterize the range, the number of integer cycles, hereby known as N, must be made
known. The integer ambiguity of the carrier phase is red-boxed below.

Fig. 2: Equation C1.1: Carrier phase ranging model

On top of the integer ambiguity N, there are various other error sources that are modelled in the GPS signal range
equation (Equation C1.1), of which are the following in descending order of importance and accuracy loss: the GPS
satellite clock bias estimation errors, the LEO satellite clock bias, ionospheric path delays, and other relativistic effects
such as clock advance effects and Shapiro path delays.

The key to mitigating errors is the realization that error components shown in Equation C1.1, are highly correlated
among GPS receivers in proximity. Subtracting measurements (differencing) between receivers will therefore “cancel”
out systematic errors between the LEO satellites.

Fig. 3: Figure C1.2: Carrier phase single differencing between two LEOs

In the case of the single differencing scenarios, the absolute carrier phase measurements taken by two LEOs are sub-
tracted from each other. Using the carrier phase ranging model from Equation C1.1, the error sources that are common
to both are red-boxed below.

Fig. 4: Equation C1.2: Common errors for a single differencing scenario

Since the baseline of the LEO satellites are expected not to deviate beyond 200km, it is considered “short”, and thus
likely that the ionospheric errors are correlated. Also, this means that the total number of and pseudo-range IDs of GPS
satellites in view will not be any different between the two LEOs. Thus, in the single differencing case, between two
LEOs and some k-th GPS satellite, differencing the carrier phase measurements between LEO A and B will remove
systematic biases in ionospheric path delays, the k-th GPS satellite clock offsets, and common relativistic effects.

As a result, the single difference equation comprises only of the relative true ranges, the relative receiver clock bias
estimation errors, and the relative carrier phase cycle integer ambiguities. For the epsilon error term, assuming both
errors are Gaussian, this results also in a square-root-2 amplification in white Gaussian noise.
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Fig. 5: Equation C1.3: Carrier phase single differencing equation

If the receiver clock bias errors are small, then the baseline can actually already be derived from the single difference
equation with little consequence to the accuracy of the baseline AB.

Fig. 6: Figure C1.3: Extraction of baseline vector AB from the single differencing equation.

In extracting the baseline vector AB in Figure C1.3, the experimenter makes a few assumptions. First, assume that the
GPS satellite is far away enough such that the signal paths taken from the emitter to the receivers A and B are almost
parallel. Second, assume also that the receiver will be able to estimate the direction vector from itself to the GPS
satellite, which is given by g-hat in the Figure C1.3, without introducing new errors. This is possible only if coarse
positioning estimates of itself is first achieved using the C/A or P code, and that the GPS navigation observables are
correctly parsed. In most cases, since the distance of the GPS satellite to the LEO is on the order of about ~20,000km,
any coarse positioning errors on the meter-level scale would not significantly affect the accuracy of the estimation of
the g-hat vector. Next, a very rough estimate of the integer ambiguity can be estimated as a float using the pseudo-range
values from code measurements, and the known carrier wavelength .

One can now solve for the AB vector as seen in Figure C1.3, notwithstanding the fact that the receiver clock bias
estimation errors were not cancelled out and will thus show up in some form in the accuracy of the positions. The
single differenced baseline solution from LEOGPS for a 100km baseline separation is shown below:

Observably, the single differenced solution still faces an accuracy > 1m. Embedded in the error plots are likely the
unaccounted relative receiver clock bias estimation errors, minor error sources such as antenna phase centre variations,
et cetera, which were not differenced away, as well as other white noise error sources.

Note: Every step of differencing amplifies the random error sources by root-2, assuming the noises are well-modelled
as a Gaussian.

We can go a step further to difference a pair of single-difference observations in order to eliminate the remnant relative
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Fig. 7: Figure C1.4: Relative position error norm of a single differenced 100km LEO baseline.

receiver clock bias estimation errors. This technique is known as double-differencing, and it will be explained in the
next section.
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CHAPTER

FIVE

CARRIER DOUBLE DIFFERENCING

We can actually go one step further beyond single differencing, and that is to difference across two reference GPS
satellites. This step is called double differencing, and it is the backbone algorithm used in LEOGPS. This removes the
relative receiver clock bias estimation errors, and this section will detail the algorithm and the results below.

Fig. 1: Figure C2.1: Carrier phase double differencing equation setup.

The key idea behind double differencing, is to create a differential between two single difference equations. For example,
between two LEO units A and B, if some GPS satellite P was taken as the reference emitter satellite in the single
difference equation, then a second single difference equation would be taken with respect to a different GPS satellite Q
as the reference emitter. In both single difference equations, it makes no difference to the relative receiver clock bias
estimation which reference GPS satellite is used, as these are the errors specific only to the receiver-side in the relative
sense.

Thus, taking two single difference measurements, one can observe that the relative receiver clock bias estimation error
has now become a common error source in the double differenced equation, which can be cancelled out (both relative
receiver clock bias terms in the red box in Figure C2.1 are actually the same and thus they cancel).

In a similar fashion to the single differencing algorithm, the double differencing algorithm requires the estimation of
the unit direction vector from the LEO A to reference GPS satellite P, and from the LEO B to the reference GPS satellite
Q. Once again, with the double-differenced relative range, and on the assumption that the signal path pairs from P to A
and P to B are parallel, and the path pairs from Q to A and Q to B are also parallel, one can de-construct the baseline
vector AB since each single difference observation forms the base of a right-angled triangle.

Since two reference satellites are now used in the creation of a double differenced equation, for N number of common
GPS satellites in view, one can expect N-1 number of double differenced equations. Solving the entire system of
equations leads to the baseline vector solution, with the error norm plotted below (error taken against a ground truth for
two LEO units at a 100km baseline separation). It is observed that the final elimination of receiver clock biases creates
an almost ten fold increase in the navigation accuracy.
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Fig. 2: Figure C2.2: Extraction of the true baseline vector via double differencing.

Fig. 3: Figure C2.3: Relative position error norm of a double differenced 100km LEO baseline.
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In its essence, the single differencing paradigm changed the structure of the navigation problem, eliminating most
nuisance errors, while the double differencing paradigm went further and essentially eliminated the receiver clock
bias at the expense of one equation in the entire system of equations, while also redefining the ambiguity term into a
double-differential ambiguity.

We can actually go one step further and perform triple-differencing, that is, performing a differencing measurement
between two double-differences. This eliminates the ambiguity entirely, but it amplifies the random errors by another
factor of root-2, and it further reduces the degrees of freedom by one, from N-1 to N-2, N being the number of GPS
satellites.

At this point though, it becomes arguable that estimating the ambiguity with the C/A range (float ambiguity resolution)
on a double-differencing measurement would give a better accuracy than performing triple differencing. This is the
reason why LEOGPS does not use triple-differencing.

17
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CHAPTER

SIX

PROCESSING FLOW

A summary of the processing flow in LEOGPS is given by the flow chart below. This is the main processing tree that
runs internally behind the GUI, in the run() function of the module leorun.py.

If the user wishes to write their own processing workflow (by overwriting leorun.py), it is advisable to refer to the API
reference on the next page.
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CHAPTER

SEVEN

API REFERENCE

The order of functions in this API reference goes according to the chronological order of which they are called in the
native LEOGPS processing work flow (see previous page). Functions that are currently not in use in the current native
work flow are listed at the end of this page.

7.1 leogui.py

The first item to be called when running leogps.py is the root GUI object (tkinter.Tk() object). This object interfaces
directly with config.txt to save or load your input parameters.

7.2 leorun.py

The leorun.run() function is called once the user clicks on Run LEOGPS.

7.3 inpxtr.py

The first thing that is run in the native work flow is to extract all the inputs from config.txt. This is done through the
inpxtr module which comprises two functions. First, inpxtr.inptim(), extracts the dates and times from the config file
and outputs them in GPS time format. Second, inpxtr.inpxtr() extracts all the other processing parameters.

inpxtr.inptim(t)
Extract time parameters from config.txt, and translates them into five timing-related parameters to be used for
processing later on. Called internally only in inpxtr.inpxtr().

Parameters t (datetime.datetime) – An epoch datetime object.

Returns

• yyyy (int) – 4-digit Gregorian year

• yy (str) – 2-digit Gregorian year (for RINEX file name)

• doy (str) – 3-digit day-of-year (for RINEX file name)

• wkday (int) – 1-digit day-of-week (Sunday = 0, Saturday = 6)
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• wwww (int) – GPS week number (generally 4-digits)

inpxtr.inpxtr()
Extract all parameters from config.txt. No input arguments.

Returns inputdict – A dictionary of key-value pairs comprising of key-values found in the config.txt
file. For example, the time step of the scenario would be the key-value pair { ‘timestep’ : 30 }

Return type dict

7.4 rnpath.py

The second step is to search for the RINEX file paths based on the 4-letter IDs of both spacecraft, and to perform
Hatanaka decompression if necessary.

7.5 timing.py

The third step involves deconflicting all the timing parameters. The routine timing.py will take in three sets of tim-
ings: the user-specified start-stop times in the GUI or in config.txt, and the start-stop times from both of the RINEX
observation files. This module will then output the intersection of all three timelines. This module will also check if
the time steps of the RINEX files and time step specified by the user are compatible.

timing.get_startstop(rnxlines)
Gets the first and last epoch after reading one RINEX file.

Parameters rnxlines (list) – List of strings as lines of the RINEX file

Returns

• rnxstart (datetime.datetime) – Observed initial time stamp in RINEX file

• rnxstop (datetime.datetime) – Observed final time stamp in RINEX file

• rnxstep (datetime.timedelta) – Observed time step in RINEX file

timing.tcheck(rnx1file, rnx2file, inps)
Reads both RINEX files and output the desired start and stop times. Sets the start, stop, and time steps for the
entire LEOGPS scenario.

Parameters

• rnx1file (pathlib.Path ) – Path of RINEX file of LEO-A

• rnx2file (pathlib.Path ) – Path of RINEX file of LEO-B

• inps (dict) – A dictionary of inputs created by inpxtr.inpxtr()

Returns

• tstart (datetime.datetime) – Scenario start time for processing

• tstop (datetime.datetime) – Scenario stop time for processing

• tstep (datetime.timedelta) – Scenario time step used in processing

• rnx1step (datetime.timedelta) – Observed time step in the RINEX file
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7.6 gpsxtr.py

The fourth step is to extract out the interpolated GPS satellite ephemeris and clock data.

The primary output of gpsxtr.gpsxtr() is the gpsdata dictionary, which is a three-layer nested dictionary comprising
all of the Lagrange-interpolated ephemeris and clock data. The first layer keys are the epochs (datetime.datetime). The
second layer keys are the PRN IDs of GPS satellites. The third layer keys are the XYZ coordinates of the position
vectors, XYZ coordinates of the velocity vectors, the clock bias, and clock drift. Third layer values are all floats.

All GPS coordinates are in ITRF by default. No coordinate reference frame transformations were performed between
the raw and the interpolated GPS ephemeris.

An example structure of this dictionary is given below:

gpsdata = {epoch1 : {1 : {px:0, py:0, pz:0,
vx:0, vy:0, vz:0,
clkb:0, clkd:0 },

2 : {px:0, py:0, pz:0,
vx:0, vy:0, vz:0,
clkb:0, clkd:0 }, ...

... ... ... ... ... ... ...

32 : {px:0, py:0, pz:0,
vx:0, vy:0, vz:0,
clkb:0, clkd:0 }},

epoch2 : {1 : {px:0, py:0, pz:0,
... ... ... ... ... ...} ...} ...}

The secondary output of gpsxtr.gpsxtr() is the goodsats list, which is a sorted list of GPS satellite PRN IDs whose
observables had no outages.

An auxiliary function gpsxtr.gpsweekday() exists but is not documented here. It converts a datetime object into two
string variables: the GPS day-of-week and the GPS week number. This is a similar function to inpxtr.inptim().

7.7 rinxtr.py

The fifth step involves the extraction of RINEX observations C1/P1, P2, L1, L2, D1, D2, with carrier phase marking,
and cycle slip detection performed using the phasep.py module.

An additional ‘flag’ key will be added to the RINEX observables to mark them. These are the possible values belonging
to the ‘flag’ keys.

• “start” : start of carrier phase observed, from an N-th GPS satellite, in a sequence.

• “end” : last carrier phase observed, from some N-th GPS satellite, in a sequence.

• “solo” : single carrier phase observation by some N-th GPS satellite, no sequence.

• “none” : carrier phase observation within a sequence, from some N-th GPS satellite.

• “slip” : cycle slip flag for carrier phase observed from some N-th GPS satellite.
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An additional carrier phase term, L4, will also be added to the RINEX observables. This helps LEOGPS to perform
cycle slip detection. If the user opts for single frequency processing, then L4 is the Melbourne-Wubbena linear com-
bination. If the user opts for dual frequency processing, then L4 is the geometry-free linear combination.

If Doppler observables D1/D2 are not found in the RINEX observations, then Doppler values will be estimated through
the dopest.py module, by estimating a first-order derivative of the L1/L2 phase values numerically using polynomial
fitting.

The output RINEX observations are structured as a dictionary of epochs, each epoch with a sub-dictionary of GPS
satellites based on IDs (1 to 32), and each ID with a sub dictionary of the various observations (C1/P1, P2, L1, L2, D1,
D2). Example output structure:

rnxproc = {epoch1 : {1 : {'C1':123, 'L1':123, ...
'L4':321, 'flag':'none'} ...} ...

epoch2 : {2 : {'C1':123, 'L1':123, ...
'L4':321, 'flag':'slip'} ...} ...

...

epochX : {1 : {'C1':123, 'L1':123, ...
'L4':321, 'flag':'none'} ...}}

If the user opts for code-carrier smoothing Hatch filter (either through the GUI or in the config file), then hatch filtering
will be called in rinxtr.rinxtr() using the phasep.py module.

You may also change the length of the cycle slip filter, and the filter tolerance in terms of the number of standard
deviations through the GUI or manually in the config file.

Do ensure that RINEX observation files follow 4-letter ID naming convention followed by the DOY + 0, with the file
extension .YYO.

7.8 phasep.py

The phasep.py module augments the RINEX data dictionary parsed out by rinxtr.py module. It comprises the cycle
slip detection and marking function phsmrk(), as well as the hatch filtering algorithm ph1fil() for L1 observables,
and ph2fil() for L1 + L2 observables. Within the hatch filtering loop, each code-phase data point at each time step is
computed by the hatch1() or hatch2() functions.

In this module, the carrier phase cycle slip detection algorithm is done by performing an interpolation of combined L4
(see rinxtr.py above) carrier phase data, and observing if there are any single points of data that exceed “X” sigmas
of the interpolated carrier phase. “X” refers to the user-specified number of standard deviations as a cut-off point for
declaring deviant observations as cycle slips. Such deviant observations will trigger the script to mark that epoch’s
observation and GPS PRN ID with a cycle slip string flag, and print a warning message to the user in the terminal.
However, as of Version 1.3, LEOGPS does not attempt to repair or reject that particular observation.

Note: The RINEX data dictionary returned by phasep.phsmrk(), phasep.ph1fil(), phasep.ph2fil() all share the same
nested dictionary key-value pairs as the output of the rinxtr.rinxtr() function.
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7.9 dopest.py

If Doppler observables D1/D2 are not found in the RINEX observations, then Doppler values will be estimated through
the dopest.py module, by estimating a first-order derivative of the L1/L2 phase values numerically using polynomial
fitting.

7.10 posvel.py

The sixth step is to perform single point positioning (SPP), using the code pseudorange equations, solved via weighted
least squares epoch-wise. Thus, the primary function posvel.posvel() is called once for each satellite and for each
epoch.

In the code phase ranging equation, GPS satellite clock biases are offset from the output of the gpsxtr.py module.
Ionospheric delays are handled too. In the L1 case, the GRAPHIC linear combination is used. In the L2 case, the
ionosphere-free linear combination is used. Other effects such as the signal time-of-flight, the effects of Earth rota-
tion, relativistic Shapiro effect, relativistic clock delays and clock advances are also offset. Functions to compute the
relativistic effects are given in the next section, under einstn.py.

Doppler-based estimation of velocities will also be performed if Doppler data is available in the RINEX data dictionary
parsed out by rinxtr.py module. By default, if Doppler data is missing, the dopest.py module would have worked its
magic to estimate the Doppler values.

Note: Tropospheric effects are not handled in posvel.py as LEOGPS was built for spaceborne receivers and not for
terrestrial receivers. However, if you wish to include terrestrial receivers, you can include the tropospheric modelled
offsets (i.e. Saastamoinen, Hopfield, or Differential Refraction models etc) to the observed range variable gpsrng_obsv
from lines 258 to 297.

In the main work flow leorun.run(), this function will be called once in each epoch for each of the two satellites. Both
SPP results will be used in the carrier phase ambiguity estimation.

7.11 einstn.py

The ‘Einstein’ module, comprises two main functions: one to compute the clock advance and one to compute the
Shapiro path delay. In both functions, the output is converted to the equivalent path-length in meters.

Note: The rate of advance of two identical clocks, one in the LEO satellite and the other on the GPS satellite, will
differ due to differences in the gravitational potential and to the relative speed between them.

Note: Shapiro Delay: Due to the space time curvature produced by the gravitational field, the Euclidean range
travelled by the signal, which is computed by posvel.py must be corrected by the extra distance travelled. Typically,
Shapiro effects corrupt the range model with about ~2cm ranging error.

This module will be called in posvel.py during the setup of pseudorange model in the iterative least squares solution
of single-point positioning.
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7.12 azimel.py

While elevation-dependent or azimuth-dependent weighting is not built into the iterative least squares processing of
LEOGPS for single point positioning, this module exists (but is not used) if the user wishes to compute azimuths and
elevations from the LEO to GPS satellites anyway.

7.13 ambest.py

This is the seventh processing step, which is the carrier phase integer or float ambiguity resolution step. This module
contains functions that support epoch-wise processing for integer ambiguity resolution step.

The chief function in the module is the ‘ambest()’ function, which outputs the precise relative baseline vector between
the two spacecraft. This processing is done snapshot-wise, and thus has to be called for each epoch of carrier phase
observations. All other supporting functions are called within ‘ambest()’. At the user-level, it is advised to modify
contents only within ‘ambest’ unless the user wishes to modify the core float ambiguity resolution algorithm.

An option exists to perform integer fixing (see the fix argument above) using Peter Teunissen’s LAMBDA method.
A Pythonic translation of his original LAMBDA Integer-Least-Squares (ILS) Search-and-Shrink algorithm has been
provided in the ambfix.py module.

Note: If the user wishes to set their own custom zero difference covariance matrix, the user can input this in the
optional covZD argument. If the user does not specify the covZD argument, then covZD by default will revert to an
identity matrix scaled by the sigma argument above. Thus, running LAMBDA (by setting fix = True when calling
ambest.py), but not setting a custom covZD argument, only has the equivalent effect of integer rounding.

7.14 ambfix.py

This module holds the classical LAMBDA method that was originally authored by Teunissen, Jonge, and Tiberius
(1993). The code was later written in MATLAB by Dr Sandra Verhagen and Dr Bofeng Li. It takes in a vector of
float ambiguities to the integer least-squares (ILS) problem, and covariance of the float ambiguities. It then runs the
LAMBDA’s ILS search-&-shrink and spits out the ambiguity integers. The other 5 methods in original LAMBDA
MATLAB code are not supported here (feel free to edit the code and implement it youself). The default ncands = 2, as
per original code. All supporting functions from the original MATLAB code (decorrel, ldldecom, ssearch) have been
nested within the main function as sub functions.

Note: LAMBDA always first applies a decorrelation before the integer estimation. For ILS this is required to guarantee
an efficient search. For rounding and bootstrapping it is required in order to get higher success rates (although rounding
and bootstrapping is not included in LEOGPS).
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7.15 frames.py

This is the eighth step in the LEOGPS native processing work flow. This step performs the conversion of the coordinate
reference frames between ITRF and ICRF, via the IAU1976 Theory of Precession and IAU1980 Theory of Nutation.
For the visualisation of the formation geometry, it is recommended that the user select the Hill frame as the relative
orbit coordinate frame. By default, the reference frame in the downloaded ephemeris files in AIUB CODE’s FTP is
the ITRF.

7.16 pubplt.py

In the final stage, after all processing is done, the pubplt.py module publishes the information into output files in the
outputs folder, found in the LEOGPS root directory.

Specifically, there are three functions in this module: a function to save as a plot graph the interpolated GPS ephemeris
and clock biases; a function to save as a text report the interpolated GPS ephemeris and clock biases; and a function to
save the final ephemeris and precise baselines estimated of both LEO-A and LEO-B.

7.17 consts.py

The following is a list of common constants used throughout LEOGPS, extracted from the University of Bern, Center
for Orbit Determination in Europe (CODE):

C = 299792458.0 # VELOCITY OF LIGHT M/SEC
FREQ1 = 1575420000.0 # L1-CARRIER FREQUENCY GPS 1/SEC
FREQ2 = 1227600000.0 # L2-CARRIER FREQUENCY GPS 1/SEC
FREQ5 = 1176450000.0 # L5-CARRIER FREQUENCY GPS 1/SEC
FREQP = 10230000.0 # P-CODE FREQUENCY GPS 1/SEC
FREQG1 = 1602000000.0 # L1-CARRIER FREQUENCY GLONASS 1/SEC
FREQG2 = 1246000000.0 # L2-CARRIER FREQUENCY GLONASS 1/SEC
DFRQG1 = 562500.0 # L1-CARRIER FREQ. DIFF. GLONASS 1/SEC
DFRQG2 = 437500.0 # L2-CARRIER FREQ. DIFF. GLONASS 1/SEC
FREQGP = 5110000.0 # P-CODE FREQUENCY GLONASS 1/SEC
FRQE1 = 1575420000.0 # L1-CARRIER FREQUENCY GALILEO 1/SEC
FRQE5 = 1191795000.0 # L5-CARRIER FREQUENCY GALILEO 1/SEC
FRQE5a = 1176450000.0 # L5a-CARRIER FREQUENCY GALILEO 1/SEC
FRQE5b = 1207140000.0 # L5b-CARRIER FREQUENCY GALILEO 1/SEC
FRQE6 = 1278750000.0 # L6-CARRIER FREQUENCY GALILEO 1/SEC
FRQS1 = 1575420000.0 # L1-CARRIER FREQUENCY SBAS 1/SEC
FRQS5 = 1176450000.0 # L5-CARRIER FREQUENCY SBAS 1/SEC
FRQC1 = 1589740000.0 # L1-CARRIER FREQUENCY COMPASS 1/SEC
FRQC2 = 1561098000.0 # L2-CARRIER FREQUENCY COMPASS 1/SEC
FRQC5b = 1207140000.0 # L5b-CARRIER FREQUENCY COMPASS 1/SEC
FRQC6 = 1268520000.0 # L6-CARRIER FREQUENCY COMPASS 1/SEC
FRQJ1 = 1575420000.0 # L1-CARRIER FREQUENCY QZSS 1/SEC
FRQJ2 = 1227600000.0 # L2-CARRIER FREQUENCY QZSS 1/SEC
FRQJ5 = 1176450000.0 # L5-CARRIER FREQUENCY QZSS 1/SEC
FRQJ6 = 1278750000.0 # L6-CARRIER FREQUENCY QZSS 1/SEC

(continues on next page)
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(continued from previous page)

GM = 398.6004415e12 # GRAVITY CONSTANT*EARTH MASS M**3/SEC**2
GMS = 1.3271250e20 # GRAVITY CONSTANT*SOLAR MASS M**3/SEC**2
GMM = 4.9027890e12 # GRAVITY CONSTANT*LUNAR MASS M**3/SEC**2
AU = 149597870691 # ASTRONOMICAL UNIT M
AE = 6378137.0 # EQUATORIAL RADIUS OF EARTH M
CONRE = 6371000.0 # MEAN RADIUS OF THE EARTH M
J2 = 1.0826359e-3 # DYNAMICAL FORM-FACTOR IERS(2003) 1
FACTEC = 40.3e16 # IONOSPHERIC FACTOR M/SEC**2/TECU
P0 = -0.94e-7 # NOMINAL RAD.PR. ACCELERAT. M/SEC**2
OMEGA = 7292115.1467e-11 # ANGULAR VELOCITY OF EARTH RAD/USEC
EPHUTC = 55.0 # EPH. TIME (ET) MINUS UTC SEC
WGTPHA = 1.0 # WEIGHT FOR PHASE OBSERVATIONS 1
WGTCOD = 1.0e-4 # WEIGHT FOR CODE OBSERVATIONS 1
HREF = 0.0 # REFERENCE HEIGHT FOR METEO MODEL M
PREF = 1013.25 # PRESSURE AT HREF MBAR
TREF = 18.0 # TEMPERATURE AT HREF DEG. CELSIUS
HUMREF = 50.0 # HUMIDITY AT HREF %
ERR = 7.2921150e-5 # EARTH INERTIAL ROTATION RATE RAD/SEC

This API reference was automatically generated using Sphinx’ Autodoc feature, using the NumPy docstring format,
and last updated on 11th September 2021.

For bugs, raise the issues in the GitHub repository. For collaborations, reach out to me (sammmlow@gmail.com). The
project is licensed under the MIT license.

Written By: Samuel Y. W. Low
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